4. Homework Assignments

Dynamical Systems II

Bernold Fiedler

http://dynamics.mi.fu-berlin.de/lectures/due date: Thursday, November 13, 2014

Problem 1: [counts as 2 problems] Let a, b denote orientation-preserving C^2 -diffeomorphisms of S^1 and ϱ the rotation number. Prove or disprove:

- (i) $\varrho(a) + \varrho(a^{-1}) = 0;$
- (ii) $\varrho(aba^{-1}) + \varrho(b^{-1}) = 0;$
- (iii) if ab = ba and $\varrho(a) \notin \mathbb{Q}$ then $\varrho(ab) = \varrho(a) + \varrho(b)$;
- (iv) if $\varrho(a) = \varrho(b) \notin \mathbb{Q}$ then ab = ba;
- (v) if $\varrho(a) = \varrho(b) \notin \mathbb{Q}$ then $\varrho(ab) = 2\varrho(a)$;
- (vi) $\varrho(ab) = \varrho(ba);$
- (vii) if $n \in \mathbb{Z}$ then $\varrho(a^n) = n\varrho(a)$;
- (viii) $\varrho(ab) = \varrho(a) + \varrho(b)$.

Problem 2: Calculate the rotation number $\varrho(\alpha)$ of the time- 2π -map of the differential equation

$$\dot{x} = \alpha + \cos(x - t), \qquad x \in S^1.$$

Problem 3: Consider the map $A : \mathbb{R} \to \mathbb{R}$,

$$A(y) = \begin{cases} 2y, & 0 \le y < 1 \\ A(y-1) + 1, & 1 \le y \\ A(y+1) - 1, & y < 0 \end{cases}$$

Thus A(y+1) = A(y) + 1 for all y and A defines a map $\tilde{A}: S^1 \to S^1 = \mathbb{R}/\mathbb{Z}$. However A and \tilde{A} are not homeomorphisms. Nonetheless, try to define the usual "rotation number" $\varrho(y_0)$ for initial conditions y_0 . Does $\varrho(y_0)$ depend on y_0 ?

1